1. A gas expands from 264 mL to 971 mL at constant pressure. Calculate the work done (in joules) by the gas if it expands (a) against a vacuum and (b) against a constant pressure of 4.00 atm.

2. A gas expands in volume from 26.7 mL to 89.3 mL at constant temperature. Calculate the work done (in joules) if the gas expands (a) against a vacuum, (b) against a constant pressure of 1.5 atm, and (c) against a constant pressure of 2.8 atm.

3. A gas expands and does P-V work on the surroundings equal to 279 J. At the same time, it absorbs 216 J of heat from the surroundings. What is the change in energy of the system?

4. The work done to compress a gas is 74 J. As a result, 26 J of heat is given off to the surroundings. Calculate the change in energy of the gas.

5. Two ideal gases at the same temperature and pressure are placed in two equal-volume containers. One container has a fixed volume, while the other is a cylinder fitted with a weightless movable piston. Initially, the gas pressures are equal to the external atmospheric pressure. The gases are then heated with a Bunsen burner. What are the signs of q and w for the gases under these conditions?

6. Calculate the work done in joules when 1.0 mole of water vaporizes at 1.0 atm and 100°C. Assume that the volume of the liquid is negligible compared with that of steam at 100°C, and ideal gas behavior.