Notes 2.8
Solving for a Specific Variable
1. Solve formulas for specified variables

Some equations have more than one variable.

\[3x + 2y = 6 \]

This equation can be solved for either \(x \) or \(y \).
(We will be told which one to solve for).

Here are other equations (or formulas) that you may have seen before:

\[P = 2L + 2W \]
\[d = rt \]
\[A = \frac{1}{2} bh \]

You can solve for any of the variables in any of these equations.
Example: Solve for \(t \) \(S = 9s^2 + t \)

Undo this as you would any other equation…what must you do to get \(t \) by itself?

\[
S = 9s^2 + t
\]

Subtract the \(9s^2 \) from both sides…

\[
S - 9s^2 = t
\]

Since \(S \) and \(s^2 \) are not like terms, they cannot be combined…

This is the solution.
The formula for the **Perimeter of a Rectangle** is

\[P = 2L + 2W \]

Example: Solve for \(W \)

\[P = 2L + 2W \]

\[\underline{- 2L - 2L} \]

\[P - 2L = 2W \]

\[\underline{\underline{2}} \quad \underline{\underline{2}} \]

\[\frac{P - 2L}{2} = W \]
Example: Solve for $b \quad A = 5a^2b$

What must you do to get b by itself?

We must “undo” the multiplication by $5a^2$

\[
\frac{A}{5a^2} = \frac{5a^2b}{5a^2}
\]

Divide $5a^2$ from both sides…

\[
\frac{A}{5a^2} = b
\]

This is the solution.
Example: Solve for $c\quad A = \frac{1}{2} h(b + c)$

How can you get c by itself?

You could distribute the $1/2 \ h$, but that would yield 2 fractions…

...an easier way of handling this would be to multiply by the reciprocal of $1/2$ first…

$$2 \cdot A = 2 \cdot \frac{1}{2} h(b + c)$$

$$2A = \frac{h}{h}(b + c) \quad \text{Now, divide both sides by } h...$$

$$\frac{2A}{h} = b + c \quad \text{Subtract } b \text{ from both sides...}$$

$$\frac{2A}{h} - b = c$$
Example: Solve for \(x \) \[
\frac{x - s}{2} = \frac{x + s}{8}
\]

One way to solve this is to multiply both sides by the common denominator of 2 and 8…

\[
48 \cdot \frac{x - s}{2} = \frac{x + s}{8} \cdot 8
\]

\[
4(x - s) = x + s
\]

\[
4x - 4s = x + s
\]

Get \(x \)’s on one side, and \(s \)’s on the other…

\[
- x
\]

\[
3x - 4s = s
\]

\[
+4s
\]

\[
3x = 5s
\]

\[
\frac{3}{3}
\]

\[
x = \frac{5s}{3}
\]